ページの先頭です
ページ内移動用のリンクです
サイト内共通メニューへ移動します
本文へ移動します


サイトの現在地を表示します
サイトの現在地表示をスキップして本文へ移動します

ニュース

リサイクルが容易な新しいプラスチックを研究者が開発

[写真]

プラスチックは、リサイクルすると不純物が残ったりポリマー(重合体)の特性が劣化したりします。こうした問題を改善するため、研究者が新たにリサイクルが容易な「次世代プラスチック」を開発しました。 (引用:Gigazine4月27日)

マイクロプラスチックの問題が叫ばれ、プラスチック製品を削減する動きが加速している中、容易に”リサイクル”できる材料が開発されました。

この研究は、ローレンス・バークレー国立研究所、マテリアルサイエンス部門のBrett A. Helms博士らのチームによる成果です。この研究チームでは、機能性ポリマーやマイクロ、メソ構造体の開発を通してエネルギー、サステナビリティ、水、食料の問題の改善に取り組んでいるようです。

現状、プラスチックを解重合してリサイクルする方法は、不純物の混入や、リサイクル後にポリマーの性質が変わってしまうなどの品質的な問題や解重合するのに大がかりな装置が必要であるコストの問題があります。そのためアルミや鉄と比べてプラスチックのリサイクルは、クローズドループリサイクル(材料の持つ本来の性質を保ったまま同じ材料製品の原料として無限にリサイクル)の割合が低いのが課題となっています。そこでこの研究では、硫酸によって解重合できるモノマーの開発を行いました。

着目したのは、ß-triketonesとAminesの脱水反応によるDiketoenamine結合の形成です。下の図のように芳香族、脂肪族どちらのアミンでも可逆的に反応し、アミン同士の交換も可能である反応を応用しました。同様の研究は他の様々なC=O結合をもつ基質でも多数検討されていますが、リサイクルによって重合前と同じ構造のモノマーを回収できる分子の発見が本研究のカギとなっています。

[図]

ポリマーの重合、解重合で使用している反応機構(引用:研究室サイト

具体的に論文中では、TriketonesであるTK-6とTRENを使ってPoly(diketoenamine)、PDK-6(TREN)を合成したことを報告しています。さらにこのPDK-6(TREN)に硫酸を加えて加水分解後、固相は水と炭酸カリウムを加えて溶解され、水と塩酸によって純度の高いTriketonesを析出させることに成功しています。一方の液相は、イオン交換したのちに精製され、TRENを回収しています。このプロセスは、他のプラスチックが混じっていても、着色剤が混ざっていても、繊維の中に織り込まれていてもモノマーの回収に成功していて、ポリマーを選別しなくてもリサイクルできることを実証しています。さらに、リサイクルではないモノマーとリサイクルしたモノマーを比較して同等の熱物性を示すことも証明されています。アミンに関しては、TRENだけでなく他のアミンも加えることでポリマーの機械的、熱的物性を向上でき、高い応用範囲が示されています。

[図]

TriketoneとTRENの反応

冒頭での説明の通りプラスチックをモノマーに戻して再度プラスチックを作る現状の技術には改善の余地があり、大変興味深い研究だと思います。特に、熱をかけずに酸で解重合を行い、液相と固相でそれぞれのモノマーを回収できることは、スケールアップの可能性が容易に可能であると思います。気になる点は、複数のアミンを使ってポリマーを合成した場合に、モノマー回収率とその純度に影響があるのかどうかで、モノマーの処方に関係なくリサイクルできるのであれば応用範囲も広がり商業的にも使いやすくなるのではと思います。

[図]

着色した繊維の中からポリマーを取り出す過程と結果(引用:arstechnica)

ところで日本のプラスチックのリサイクル率は、84%と高い数値を出していて「こんな研究は不必要だ」と思うかもしれません。しかしながら、このリサイクルという言葉には、マテリアルリサイクル、ケミカルリサイクル、サーマルリサイクルという三つのリサイクル方法が含まれていて、燃やして発電したりすることもリサイクルとしてカウントしています。また安定供給という観点からマテリアルリサイクルに使われるプラスチックの多くが、産業で排出された廃プラスチックです。さらに、そのマテリアルリサイクルの中でも、同じ製品になるクローズドループリサイクルはペットボトルくらいで、他はカスケードリサイクルと呼ばれる別の性質の劣化・変化を伴うリサイクルとなっています。つまり、各家庭が頑張って分別したプラスチックの多くは、プラスチックに生まれ変わるのではなく、燃やされて電気になっているのが現状のようです。そのため、日本でも使い捨てプラスチックへの対策は必要で、サーマルリサイクルから脱却する必要があると考えられます。しかしながらストローの問題のようにプラスチックからの脱却が不便を伴う場合には、プラスチックのごみを同じ製品に戻すクローズドループリサイクルのほうが合理的であり、本研究のようなクローズドループリサイクルに関する研究は、二酸化炭素の排出を抑える上で重要であると言えます。

[図]

リサイクルの種類(引用:プラスチック循環利用協会

[図]

2016年廃プラスチックの処理方法(出典:プラスチック循環利用協会)

掲載記事について

本記事はWEBに混在する化学情報をまとめ、それを整理、提供する化学ポータルサイト「Chem-Station」の協力のもと、ご提供しております。

Chem-Stationについて

お問い合わせ

この製品・ソリューションに関するお問い合わせ、資料請求は、富士フイルム和光純薬(株)までお気軽にお問い合わせください。

電話でのお問い合わせ
富士フイルム和光純薬(株) 03-3244-0305
ウェブでのお問い合わせ
お問い合わせフォーム


ここからフッターです

ページの終わりです
ページの先頭へ戻る