ページの先頭です
ページ内移動用のリンクです
サイト内共通メニューへ移動します
本文へ移動します


サイトの現在地を表示します
サイトの現在地表示をスキップして本文へ移動します

化学者のつぶやき

Dead Endを回避せよ!「全合成・極限からの一手④:Norzoanthamineの全合成」(解答編)

[写真]

このコーナーでは、直面した困難を克服するべく編み出された、全合成における優れた問題解決とその発想をクイズ形式で紹介してみたいと思います。

第4回は宮下・谷野らによるNorzoanthamineの全合成を取り上げました(問題はこちら)。今回はその解答編になります。

Total Synthesis of Norzanthamine Miyashita, M.; Sasaki, M.; Hattori, I.; Sakai, M.; Tanino, K. Science 2004, 305, 495. DOI:10.1126/science.1098851

解答例

何はともあれ、望む反応および副反応のメカニズムを理解せずには手がつきません。

ここで進行させたい反応は、見ての通りケトンをアルキンに変換する反応です。無水トリフルオロスルホン酸(Tf2O)でケトンを処理してエノールトリフラートに変換した後、塩基(DBU)によるβ脱離を行うことで、望みの化合物が得られるという寸法です。

[図]

しかし実際には望むアルキンBに加え、副反応由来のCが生じてきます。よくよくCを眺めると反応点の炭素原子の酸化度が変わっていることが分かります。実はこの副反応、分子内近傍に水素原子、またそれがエーテルのα位に位置しているために起こる、求電子性カルボニル基へのヒドリド転位が起点となっています。Tf2Oと反応するところまではA→Bと同じ経路を共有しているのですが、その後が違っています。つまり、ヒドリド転位によってカルボニル基が還元されたあと、続く塩基処理によって分子内環化が起こることで、副生成物Cが生じているのです。

[図]

さて以上の理解をもとに、どうやればCの生成を抑えられるか?と考えてみると、「分岐起点となるヒドリド転位を起きづらくしてやればいいのでは?」という発想に至ることができます。A→Bの経路には、ヒドリド転位の過程が存在しないためです。

問題文では「基質の重水素化によって解決した」とあることから、速度論的同位体効果(Kinetic Isotope Effect, KIE)を活用していると推測できます。KIEとはおおまかには「反応に関わる原子をより質量数の大きな同位体へと置換してやれば、反応速度が低下する」という現象です。これを念頭におくことで、転位してほしくない水素原子を重水素原子で置き換えれば、ヒドリド転位が抑制されるだろう、という発想が出てきます。

以上の考察から、下のようなA-d2こそが望む重水素化体であると考えることができます。

[図]

予想外のトラブルへの対処から場当たり的に考えだされたはずのA-d2ですが、見かけ上はそれをかけらも感じさせない巧妙な経路で作られており、驚く他ありません。

まず、基本的な合成経路を全く変更することなく、重水素源として入手可能な試薬(Ph3PCD3Br)を使って作られています。これにより価格を抑えられることはもちろん、大きなルート変更を回避することで長年の蓄積がある知見をそのまま用いることができ、基礎研究に費やした時間を無駄にすることがなくなります。

また、最終的に重水素が全てが除去されて、標的に重水素を残さない経路設計になっている点も着目すべきでしょう。これは重水素化標的となっている炭素が、最終的にカルボン酸まで酸化される宿命にあるという本質に着目した一手となっています。

[図]

合成経路を大局的に俯瞰できる眼があってこそ、今回のような「極限からの一手」の選択が可能となるのです。匠の発想がキラリと光る、優れた解決法だと思います。

掲載記事について

本記事はWEBに混在する化学情報をまとめ、それを整理、提供する化学ポータルサイト「Chem-Station」の協力のもと、ご提供しております。

Chem-Stationについて

お問い合わせ

この製品・ソリューションに関するお問い合わせ、資料請求は、富士フイルム和光純薬(株)までお気軽にお問い合わせください。

電話でのお問い合わせ
富士フイルム和光純薬(株) 03-3244-0305
ウェブでのお問い合わせ
お問い合わせフォーム


ここからフッターです

ページの終わりです
ページの先頭へ戻る