化学者のつぶやき
低分子の3次元構造が簡単にわかる!MicroEDによる結晶構造解析
低分子化合物の構造決定法において、最も強力な方法といえば、単結晶X線構造解析(SCD)です。質の良い単結晶さえ得られれば、X線の回折データから、分子の3次元構造をはっきりと決定することができます。とは言うものの、質の良い単結晶など、そう簡単に作れるものではありません。結晶作製の過程はひたすら試行錯誤の連続で、膨大な時間がかかるのも普通です。SCDがNMRや質量分析のように広く用いられない最大の理由が、この「単結晶作製の難しさ」にあります。
さて、この技術の大きなブレークスルーと言えば、2013年に東京大学・藤田研から発表された結晶スポンジ法です。多孔質結晶にサンプルを封じ、分子を規則正しく整列させるというこの手法は、SCDの唯一・最大の欠点を解決する強力な手法として、大きく注目を浴びました。
今回は、この結晶スポンジ法に続く新たなブレークスルーとして、UCLAのTamir Gonen教授らによって発表された、MicroEDによる低分子結晶構造解析についてご紹介します。
“
“The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination” Jones, C. G.; Martynowycz, M. W.; Hattne, J.; Fulton, T. J.; Stoltz, B. M.; Rodriguez, J. A.; Nelson, H. M.; Gonen, T. ACS Cent. Sci. 2018, 4, 1587. (DOI: 10.1021/acscentsci.8b00760
”
1. 電子の回折を用いた微小結晶解析:MicroED
MicroEDは、電子顕微鏡を用い、電子の回折(ED; electron diffraction)によって微小な結晶サンプルから構造情報を得る手法です。電子線回折はX線回折と同じ原理で、サンプルに電子線を当て、得られた回折パターンから物質の構造を解析します。電子線は負電荷を帯びた粒子からなり、原子核やその周りの電子とクーロン力によって強く相互作用するため、電荷を持たず価電子のみと相互作用するX線よりも、強いシグナルを得ることができます(図1)。必要な結晶サイズは100 nm~1 µm程度と小さく、大きな単結晶を用意する必要はありません。
図1. X線回折法と電子回折法の違い。
電子線回折法自体は、固体物理学や化学分野において古くから使われてきた手法なのですが、測定対象が小さいため電子線によるダメージの影響を受けやすく、有機物質の結晶構造解析を行うのは困難でした。3次元の結晶構造を知るには、サンプルを回転させて異なる角度で回折パターンを測定する必要がありますが、ダメージを受けやすい有機物質では、多方向の測定を行ううちにサンプルが壊れ、回折スポットが消えてしまいます。
ところが、2013年にGonen教授らは、電子線の放射量を減らしてサンプルダメージを低減し、高性能の検出器で電子線回折を記録することで、タンパクの結晶構造を高精度で解析できる手法(MicroED)を発表しました。[1] その後、彼らはこの技術に改良を加え、サンプルを連続的に回転させながら回折パターンを動画で記録するなどにより、タンパクの結晶構造を原子レベルの分解能で得ることに成功しました(図2)。[2, 3]
図2. MicroEDにおけるサンプル測定。
2. MicroEDによる低分子化合物の解析
さて、上記のように、MicroED法は元々はタンパクの構造解析のために開発された技術ですが、Gonen教授らは、これを低分子化合物にも応用できないかと考えました。有機化学の分野でも、結晶構造解析は、キラルの絶対配置の決定、結合長の比較、分子間相互作用の解析などにおいて非常に有用です。今回紹介する論文において、彼らは様々な粉末状の化合物を用いてMicroEDを行い、それらの結晶構造をオングストローム以下の分解能で得ることができることを示しました。
MicroEDでは、大きな単結晶は必要無いので、サンプル調整は至って簡単です。微量のサンプルをTEMグリッドに乗せ、電子顕微鏡に導入するだけで測定を行うことができます(図3)。測定にかかる時間はたった3分、試料ステージを毎秒0.6度ほどの速さで回転させ、異なる角度での回折データを記録します。得られたデータは、X線回折データ用のソフトウェアで同じように解析することができます。
図3. CryoEM MicroEDのサンプル調製。
図4に、彼らがMicroEDで構造解析を行った化合物の一部を示しています。試薬会社からの購入品、カラム精製後の化合物など、様々なサンプルの構造解析ができることが示されています。また、X線はプロトンとほぼ相互作用しないの対し、電子線回折ではプロトンの情報も得ることができます。図4の(+)-リマスペルミジンやカルバマゼビンでは、水素原子の位置(黄緑)が電子密度図に示されています。
図4. MicroEDにより構造解析を行った低分子化合物。(論文より一部改変)
さらに、MicroEDは測定対象となる領域が微小なため、不純物による影響も受けません。X線回折やNMRでは、不純物の混じったサンプルを解析するのは難しいですが、MicroEDでは、グリッド上に異なる化合物の結晶が混在していても、絞りを使って特定領域のみの回折を簡単に測定することができます。結晶同士がグリッド上で数マイクロメートル以上離れていれば、測定結果に影響が出ません。
3. 実際に使ってみて
最近、私も実際にMicroEDを使ってみる機会があったので、その様子を少し述べます。まず、ユーザー視点から言うと、サンプル調整の手間がほぼゼロで簡単、という感じでした(もちろん、サンプルの性質に大きく依存しますが)。TEMグリッドに微量のサンプルを乗せ、顕微鏡下で小さな結晶が見えれば十分です。サンプルを乗せすぎると結晶同士が近すぎて単一の結晶からのデータが得られない、という問題はありますが、濃度を調整するのはそれほど大変ではありません。
測定に関しては、TEMをそれなりに使いこなせる人であれば難しくありません。低放射量モードの設定・試料ホルダーの連続回転などが既にマニュアル化されていたため、決められた手順に従えば測定を行うことができました。低温で観察する場合は、氷の結晶とサンプルの見分けが付きにくいという問題がありますが、慣れてくれば氷の結晶の形や回折パターンが見た目で分かるようになります。また、室温に安定なサンプルであれば、クライオでなく常温でも測定が可能なので、氷によるコンタミの問題は回避できます。得られたデータは、imageJなどで画像ファイルに書き出し、普通の結晶構造解析用のソフト(XDSやMosfilmなど)を利用して解析することができます。
次に、装置管理者の視点でMicroEDを導入することについて述べると、一番のハードルは高性能なカメラが必要なことなようです。その他の要件(低放射量モード設定・サンプルの連続回転・動画撮影)に関してはソフトウェア次第で解決できますが、高性能なカメラを導入するには結構お金がかかってしまいます。また、TEM自体も高価な装置であるため、大きな大学や研究施設でないと、気軽にMicroEDをとることは難しそうです。
4. おわりに
今回は、(私の周りで最近流行っている)MicroED法について取り上げました。MicroEDは、煩雑なサンプル調製無しに結晶構造が高精度で解析できるとてもパワフルな手法です。実際、X線回折用の単結晶作製に1年取り組んで上手く行かず、諦めかけていた友人が、一度目のトライで綺麗なMicroEDパターンを得ることができ、感動していました。導入におけるハードルはありますが、ユーザー側としては、低分子・合成高分子・生体高分子など様々なサンプルの構造解析に有用な技術なので、今後応用が進められることが期待されます。
参考文献
- Shi, D.; Nannenga, B. L.; Iadanza, M. G.; Gonen, T. “Three-dimensional electron crystallography of protein microcrystals eLife 2013, 2, e01345. (DOI: 10.7554/eLife.01345)
- Nannenga, B. L.; Shi, D.; Leslie, A. G. W.; Gonen, T. “High-resolution structure determination by continuous-rotation data collection in MicroED” Nat. Methods 2014, 11, 927–930. (DOI: 10.1038/nmeth.3043)
- de la Cruz, M. J.; Hattne, J.; Shi, D.; Seidler, P.; Rodriguez, J.; Reyes, F. E.; Sawaya, M. R.; Cascio, D.; Weiss, S. C.; Kim, S. K.; Hinck, C. S.; Hinck, A. P.; Calero, G.; Eisenberg, D.; Gonen, T. “Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED” Nat. Methods 2017, 14, 399–402. (DOI: 10.1038/nmeth.4178)
関連リンク
- 単結晶X線回折:wikipedia
- 電子回折:wikipedia
- Gonen Lab
- 結晶データの登録・検索サービス(Access Structures&Deposit Structures)が公開:ケムステ
- 結晶構造データは論文か?CSD Communicationsの公開:ケムステ
- 進化する電子顕微鏡(TEM):ケムステ